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Abstract. With the use of a variational method to solve the effective-mass equation, we have
studied the electronic and hydrogenic impurity states in a corner under an applied electric field.
The electron energy levels and the impurity binding energies are calculated. Our results show
that, with the increasing strength of the electric field, the electron energy levels increase, and
the impurity binding energy in the ground state increases at first, to a peak value, then decreases
to a value which is determined by the impurity position in the corner. The dependence of the
impurity binding energy on the applied electric field and impurity position is discussed in detail.

1. Introduction

With the advances in the technology of molecular beam epitaxy (MBE), it is possible to
fabricate quantum wells and quantum wires [1]. The interfaces in these structures play
a significant role in determining the electronic and optical properties, and step structures
usually exist at the interfaces [2–7], which affect the optical transition spectra considerably.
Tanaka and Sakaki [5] and Tsuchiyaet al [6] studied Ga1−xAl xAs/GaAs quantum wells with
periodic stepped interfaces and observed a strong optical anisotropy, which is attributed to
the interface step structures. By angle-resolved photoelectron spectroscopy, Nambaet al [8]
studied the Ni(7 9 11) surfaces and found that a surface local state existed at the step edges
on Ni(7 9 11) surfaces. In fact, a stepped surface or V-shaped groove of large size in an
interface can be viewed as a corner; this model has been adopted by Lee and Antoniewicz [9]
in studying the surface bound states and surface polaron states.

In quantum wells and quantum wires, the hydrogenic impurity states and the impurity
binding energies have been studied extensively [10–16]. With the use of a variational
method, similar to that used in the study of quantum wells [10], Brown and Spector [11]
calculated the binding energies of hydrogenic impurity states in cylindrical quantum wires
using infinite and finite cylindrical confining potentials for arbitrary impurity positions.
Their results showed that for the infinite-potential-well model, the binding energy continues
to increase as the radius of the wire decreases, while in the finite-potential-well model,
the binding energy reaches a peak value as the wire radius decreases and then decreases
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to a value characteristic of the cladding. Bryant [12] studied the effects of changing the
cross sectional form on the impurity binding energy in quantum wires. Braniset al [13]
calculated the binding energy of a hydrogenic donor in cylindrical quantum wires in the
presence of a magnetic field. Using the variational method [14], Chenet al [15] calculated
the impurity binding energy in the ground state in a quantum well under an electric field, and
Cao and Thoai [16] calculated the hydrogenic impurity binding energy in the ground state
in a rectangular quantum wire under an electric field. Recently, Denget al [17] studied the
electronic and shallow impurity states in a right-angled corner by considering the dielectric
mismatch between the well material and the barrier material. The results showed that the
binding energy of the impurity ground state tends to the value of the third impurity excited
state in the bulk when the impurity approaches the corner.

In this paper, we investigate the electronic and hydrogenic impurity states in a corner
made by two orthogonal surfaces under an applied electric field. Because the electric
field pushes the electrons towards the corner, the electron motion is quantized in the
lateral direction, but it is free along the longitudinal direction, like the electron behaviour
in quantum wires. For the electronic states, we adopt the Airy function, while for the
hydrogenic impurity states, we adopt a variational method.

The paper is organized as follows. In section 2, we study the electronic states. In
section 3, we study the hydrogenic impurity states. The numerical results and discussion
are presented in section 4.

Figure 1. A schematic representation of a right-angled corner structure under an applied
electric field, where the well material and barrier material are inside and outside of the corner,
respectively.

2. Electronic states

Let us consider an electron moving in a right-angled corner structure with the well material
inside the corner and the barrier material outside of the corner, as shown in figure 1. An
electric field F = (1, 1, 0)(F/

√
2) is applied along the diagonal line of the corner. In

the effective-mass approximation, the Hamiltonian for electron states in the corner can be
written as

H0 = P 2/2mb + V (r)+ eFx/
√

2 + eFy/
√

2 (1)
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wheremb is the electron band effective mass, andr andp are the electron coordinate and
momentum, respectively. The electron-confining potential well in the corner is given by

V (r) =
{

0 x > 0 andy > 0

∞ otherwise.
(2)

Provided that the variables are separable, the electronic wavefunction for the Hamiltonian
H0 is written as

8(r) = (N/
√
Lz)Ai(ξ)Ai(ζ ) exp(ikzz)

ξ = x/l − λm

ζ = y/l − λn

l = [h̄2/
√

2mbeF ]1/3

(3)

whereN andLz are the normalization coefficients,l is the electron characteristic length
under the electric field,λm and λn are dimensionless constants, and Ai(ξ) is the Airy
function which is defined by [18]

Ai(ξ) =
{

1
3

√
|ξ |[J1/3(

2
3|ξ |3/2)+ J−1/3(

2
3|ξ |3/2)] ξ < 0

(1/π)
√
ξ/3K1/3(

2
3|ξ |3/2) ξ > 0

(4)

whereJ1/3 is the Bessel function of order 1/3, andK1/3 is the modified Bessel function
of the second kind of order 1/3. The electronic wavefunction8(r) satisfies the following
boundary conditions:

8(r)|x=0 = 8(r)|y=0 = 0 (5a)

which are equivalent to

Ai(−λn) = Ai(−λm) = 0 (5b)

wherem, n = 1, 2, 3, . . . are positive integers,λm(n) is the zero point of the Airy function,
andλ1 = 2.388. The electron energy levels are given by

Emn = [h̄2/2mbl
2](λm + λn)+ h̄2k2

z /2mb. (6)

The electronic wavefunction in the ground state is

80(r) = (N/
√
Lz)Ai(ξ)Ai(ζ ) exp(ikzz)

ξ = x/l − λ1

ζ = y/l − λ1

(7)

and the electron energy in the ground state is

E0 = h̄2λ1/mbl
2 + h̄2k2

z /2mb. (8)

3. Impurity states

When the impurity is placed at the positionr0 = (x0, y0, 0) inside the corner, the Hamil-
tonian for the impurity states can be written as

H(r) = P 2/2mb + Vion(r)+ V (r)+ eFx/
√

2 + eFy/
√

2 (9)

where

Vion(r) = −e2/(ε|r − r0|) (10)
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andε is the dielectric constant of the well material. Like in the case of quantum wells [10]
and quantum wires [11], we choose the trial wavefunction for the ground impurity state to
be

ψ(r) = N(β)Ai(ξ)Ai(ζ ) exp(−β|r − r0|)
ξ = x/l − λ1

ζ = y/l − λ1

(11)

whereN(β) is the normalization constant,β is the variational parameter, andλ1 is the
first zero point of the Airy function. The above trial wavefunction satisfies the boundary
conditions.N(β) is given by

N(β) =
[∫ ∞

0
dx

∫ ∞

0
dy Ai 2(ξ)Ai 2(ζ ) 2|ρ − ρ0|K1(2β|ρ − ρ0|)

]−1/2

|ρ − ρ0| = [(x − x0)
2 + (y − y0)

2]1/2.

(12)

The impurity ground-state energy is

〈ψ |H(r)|ψ〉 = [h̄2λ1/mbl
2 + h̄2β2/2mb] +N2(β)

∫ ∞

0
dx

∫ ∞

0
dy

{
h̄2

mbl

×
[

Ai(ξ)
d Ai(ξ)

dξ
Ai 2(ζ )β(x − x0)+ Ai 2(ξ)

d Ai(ζ )

dζ
Ai(ζ )β(y − y0)

]
+ (h̄2β/mb − e2/ε)Ai 2(ξ)Ai 2(ζ )

}
2K0(2β|ρ − ρ0|) (13)

whereK0 andK1 are the modified Bessel functions of the second kind of order 0 and 1,
respectively.

The impurity binding energyEb is defined as the energy difference between the bottom
of the electronic conduction band without the impurity (kz = 0) and the ground-state energy
level of the impurity states in the corner:

Eb = E0 − min
β

〈ψ |H(r)|ψ〉. (14)

4. Results and discussion

As an example, we choose Ga1−xAl xAs/GaAs for numerical calculations [17]. For simp-
licity, the energy is in units of effective Rydbergs,R∗ = mbe

4/2h̄2ε2, and the length is
normalized to the effective Bohr radiusa∗

0 = h̄2ε/mbe
2.

Figure 2 shows the dependence of the electron energy levels in the corner on the applied
electric field. From figure 2, we can see that, with increasing strength of the electric field,
the electron confined energies are enhanced. Because of the existence of the electric field,
the electrons are confined in the corner, which is similar to the case where the electrons are
confined in a quantum wire. Assuming that the ground electron energy level in the corner
is equal to that in a square quantum wire:

h̄2λ1/mbl
2 = h̄2π2/mbd

2

whered is the width of quantum wire, we obtain the relationship of the equivalent width
(dx = dy) of the quantum wire versus the applied electric field (F ), as shown in figure 3.
The results show that, with increasing strength of the electric field, the equivalent width
of the square quantum wire decreases, indicating stronger confinement of electrons in the
corner for the stronger electric field.
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Figure 2. The electron confined energy levels versus the applied electric field.E0, E1 andE2

represent the electron confined energy levels of the ground state, the first excited state, and the
second excited state, respectively.

Figure 3. The equivalent width of a square quantum wire versus the applied electric field for
the case where the ground electronic level in the corner is equal to that in the square quantum
wire.

Figure 4 shows the ground impurity binding energy in the corner versus the electric
field strength for different impurity positions. From figure 4, we can find that, when the
impurity is at the corner (x0 = y0 = 0), with increasing strength of the electric field,
the impurity binding energy increases monotonically; however, when the impurity is away
from the corner, with increasing strength of the electric field, the impurity binding energy
increases at first, to a peak value, then decreases to a value which is determined by the
impurity position [11, 15]. For example, when the electric field value is considerable, the
impurity binding energy is near to110R

∗ for the impurity atx0 = y0 = 10a∗
0, as shown in

figure 4. In order to show clearly the variation in impurity binding energy with electric field
strength for the impurity atx0 = y0 = 10a∗

0 in the smaller-electric-field region in figure
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Figure 4. The ground impurity binding energy in the corner versus the electric field strength
for different impurity positions: (a) the electric field strength ranges from 0 to 500 kV cm−1

for the impurity positions atx0 = y0 = 0, x0 = y0 = 0.5a∗
0, andx0 = y0 = 10a∗

0; and (b) the
electric field strength ranges from 0 to 5 kV cm−1 for the impurity position atx0 = y0 = 10a∗

0.

4(a), we magnify this region, as shown in figure 4(b).
Figure 5 shows the ground impurity binding energy in the corner versus the impurity

position for different electric fields. From figure 5, we can see that, when the electric field
is not applied (F = 0), with increasing distance of the impurity away from the corner, the
impurity binding energy increases from 0.11R∗, and finally tends to 1R∗ for x0 = y0 [17],
and our result is 0.984R∗, when x0 = y0 = 10a∗

0—see figure 5(a); while forx0 = 0, it
increases from 0.11R∗, and finally tends to1

4R
∗ [17], and our result is 0.243R∗, when

x0 = 0 andy0 = 10a∗
0—see figure 5(b). After the electric field is applied, with increasing

distance of the impurity away from the corner, the impurity binding energy increases at first,
to a peak value, then decreases monotonically. Moreover, as the applied electric field is
enhanced, the peak value of the impurity binding energy becomes larger, and the impurity
position corresponding to the peak value is nearer to the corner. These results are consistent
with the variations in impurity binding energy with the sizes of the quantum wires [11, 15].

The results obtained above are interesting and their physical interpretation and discussion
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Figure 5. The ground impurity binding energy in the corner versus the impurity position for
different electric fields: (a)x0 = y0; and (b)x0 = 0.

are as follows. Because the electric field pushes the electrons towards the corner, the
electrons in the well material are confined near the corner and the electron energy in the
corner is quantized, like the electrons confined in a quantum wire. As the electric field
strength increases, the confinement of the electrons in the corner is strengthened, and the
electron energy levels in the corner increase, as shown in figure 2. As we know, the electron
energy levels in a quantum wire increase with the decrease in its cross sectional size, and
the equivalent width of the square quantum wire for the corner structure under an applied
electric field decreases with the increase in the electric field strength, as shown in figure
3. The impurity behaviour in the corner structure under the applied electric field is also
like the impurity behaviour in a quantum wire, due to the confinement of electrons in the
corner. When the impurity is at the positionx0 = y0 = 0 in the corner, it is equivalent
to an impurity located at the corner point of a square quantum wire, and the impurity
binding energy increases monotonically with the increase in the electric field strength, like
in the case where the impurity binding energy at the corner point of a square quantum wire
increases monotonically with the decrease in its cross sectional size [19, 20]. When the
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impurity is not at the corner point, such as when the impurity position is atx0 = y0 = 0.5a∗
0

andx0 = y0 = 10a∗
0 as discussed near figure 4, the impurity position relative to the centre

of the equivalent square quantum wire is changeable as the electric field strength varies; that
is, the impurity position can move through the centre of the equivalent square quantum wire
with the increase in the electric field strength. It is well known that the impurity position
in quantum wires corresponding to the maximum binding energy is at the centre of the
quantum wires [19, 20]. That the impurity binding energy increases at first, to a peak value,
then decreases to a lower value for the impurity position not at the corner point, as shown
in figure 4, is a result of the variations in distance between the impurity and the centre of
the equivalent square quantum wire with the electric field strength. When the electric field
strength is fixed, this means that the equivalent width of the quantum wire is fixed. As
the impurity position is changed from the corner point, then to the centre of the equivalent
square quantum wire, and finally away from the quantum wire, the impurity binding energy
increases at first, then reaches a peak value, and finally decreases monotonically, as shown
in figure 5, which is in perfect agreement with the results for quantum wires [19, 20].
In fact, it is easier to fabricate a corner structure than to fabricate a quantum wire in the
experiments, and our theoretical results may provide a new way of detecting and applying
quantum confinement effects.

In conclusion, we have investigated the electronic and hydrogenic impurity states in a
right-angled corner under an applied electric field. For the electronic states, we adopt the
Airy function, while for the hydrogenic impurity states, we adopt a variational approach.
Our results show that the electron and impurity-state behaviour in the corner structure under
the applied electric field is similar to that in the quantum wires. We hope that our theoretical
results will stimulate further experimental investigations.
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